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A compliant tower in the ocean environment is modelled as a beam undergoing coupled
transverse and axial motion. The equations of motion are non-linear and coupled and are
derived here. The beam is assumed to be supported by a linear-elastic torsional spring at one
end and with a point mass at the other end. Such a model is representative of numerous
applications. The equations of motion and boundary conditions are obtained using
Hamilton's variational principle. It is assumed that strains are small but the rotation is
moderate compared to the strain so that the equations of motion for the axial and transverse
motion are non-linearly coupled. The free response in vacua and the free response in water
are considered in particular. The #uid forces, the added mass and drag forces, are modelled
using a semi-empirical Morison equation. The resulting non-linear coupled partial
di!erential equations are solved numerically using the "nite di!erence approach. In Part 2 of
this work, various forced responses are studied.

( 2000 Academic Press
1. INTRODUCTION

O!shore structures are used in the oil industry as exploratory, production, oil storage, and
oil landing facilities. In general, there are two types of o!shore structures. They are "xed and
compliant structures. Fixed structures are designed to withstand environmental forces
without any substantial displacement. Therefore, a linear dynamic analysis may be
su$cient. Compliant structures are designed to allow small but not negligible deformation
and de#ection. Tension, provided by a large buoyancy chamber, makes the structure stable.
For these structures, the dynamic responses may have non-linear characteristics which need
to be explored fully.

Fixed structures become impractical for deep water because they must be built stronger
and more bulky than the equivalent compliant structures. In recent years, the need to
explore deeper water has made compliant structures more popular.

An articulated tower includes a ballast chamber near the bottom, a buoyancy chamber
near the surface of the water, and a shaft that connects them as shown in Figure 1. The
tower is connected to its base by a universal joint that allows the tower to move in all
directions. A tension leg platform is vertically moored by a tendon at each corner of the
platform as shown in Figure 2. Buoyancy is provided by the pontoon that is submerged in
the #uid.

A vertical member of an o!shore structure may be modelled as a beam undergoing
extension and bending. Such members are the shaft of an articulated tower and tendons of
a tension leg platform.
0022-460X/00/450837#37 $35.00/0 ( 2000 Academic Press



Figure 1. Schematic of an articulated tower.

Figure 2. Schematic of a tension leg platform.
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An articulated tower or a tension leg platform can be modelled as a beam with
a linear-elastic torsional spring at its base and a concentrated mass at its free tip as shown in
Figure 3. The vertical member such as a shaft of an articulated tower or tendons of a tension
leg platform is modelled as a beam. The torsional spring simulates the various support
conditions from hinged to clamped by varying the spring constants from zero to in"nity.
The point mass is representative of structures supported by the shaft or tendons.



Figure 3. A beam supported by a torsional spring.
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In our, model, the structure is con"ned to a plane. Motion in the third direction, out of
page in Figure 3, is not allowed. The reader is referred to an extensive review of non-linear
dynamics of compliant towers which can be found in the paper by Adrezin et al. [1].

In linear behavior, transverse and longitudinal motion are decoupled and can be
described e!ectively by simple linear partial di!erential equations: extensional motion by

EA
o

L2u (x, t)

Lx2
"oA

o

L2u(x, t)

Lt2
(1)

and transverse motion by

EI
o

L4v (x, t)

Lx4
"!oA

o

L2v(x, t)

Lt2
, (2)

where u(x, t) is the axial de#ection, v(x, t) is the transverse de#ection, E is Young's modulus,
A

o
is the cross-sectional area, I

o
is the area moment of inertia of the cross-section around the

neutral axis, and o is the material density. The linear model for transverse vibration,
equation (2), is called the Euler}Bernoulli model.

For a vibrating beam, the rigid-body motion and bending are the primary components of
the overall behavior. Therefore, it may be su$cient to use a single-degree-of-freedom model
(s.d.o.f.) or a linear transverse model such as Euler}Bernoulli, Rayleigh, shear or
Timoshenko model. A discussion of linear transverse models can be found in the paper by
Han et al. [2]. The linear transverse models assume that the coupling between the
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transverse and the axial motion is negligible. However, the coupling becomes more
signi"cant with increasing slenderness ratio (the ratio of length to the radius of gyration of
the cross-sectional area). Therefore, the non-linear coupling e!ect in long slender members
of compliant towers may be important in an overall response.

The purpose of this paper is to formulate the non-linear equations of motion for the
coupled transverse and longitudinal vibration (section 2), to formulate the environmental
forces imposed by still water (section 3), and to present and analyze the free and damped
free motion (section 4). Part 2 of this work contains studies of forced vibration.

2. MATHEMATICAL MODEL OF THE STRUCTURE

The displacement "eld is obtained under the assumptions of Kirchho!'s hypothesis. It is
also assumed that the strain is small but the rotation is moderate compared to the strain.
This assumption introduces a non-linearity to the system model. The strains that
correspond to the displacement "eld are obtained. The stresses are obtained from strains
using constitutive relations that ignore the Poisson e!ect. The strain energy is then
obtained. The equations of motion and the corresponding boundary conditions are then
obtained using Hamilton's principle.

2.1. DISPLACEMENTS, STRAINS, AND STRESSES

Let us consider a beam with an original length ¸. Beam elements are labelled by their
location in the undeformed con"guration, X. The reference and current con"gurations of
the midplane are shown in Figure 4. The dotted line is the reference con"guration, and the
solid line is the current con"guration.

Using Kirchho!'s hypothesis, we write the displacements as

u
1
(X, >, t)"u(X, t)!>

Lv

LX
(X, t),

u
2
(X, t)"v(X, t), u

3
(X, t)"0, (3)

where u is the de#ection of the midplane in the x direction and v in the y direction. > is
the transverse distance from the midplane to the point of interest on the cross-section in
the reference frame. Assuming a symmetrical cross-section, u is also the average de#ection
of the beam element X. We assume that the strain is small, but the rotation can be
moderate. Mathematically, we write

Lu
1

LX
&A

Lu
2

LXB
2
;1. (4)

In terms of midplane de#ections, we can write

Lu

LX
&A

Lv

LXB
2
;1. (5)

It should be noted that in order for Kirchho!'s hypothesis to be valid, the only condition
that has to be satis"ed is that the strains be small when compared to the rotation [3].
Therefore, by using Kirchho!'s hypothesis, we have already assumed small strains and
moderate rotation.



Figure 4. The reference and current midplane con"gurations of the beam.
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With this assumption, Green's strains are given by
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Using the assumed displacement "eld given in equation (3), Green's strains are given by
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where we keep in mind that u and v are functions of X and t.
The second Kirchho! stress, ignoring the Poisson e!ect, is given by

p8
XX

"EE
XX

. (8)

2.2. LAGRANGIAN

The general expression for the strain energy is given by
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strain
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2 P
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ij
E
ij
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o
, (9)
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where <
o

is the volume of the undeformed beam. Using the expressions for the second
Kirchho! stress and Green's strain, we obtain
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2
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dX, (10)

where prime notation is used for derivatives with respect to X. Expanding the integrand, we
obtain
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Integrating over the area, the terms that are odd functions of> (second and "fth) disappear
due to symmetric cross-section, and >2 becomes the area moment of inertia I

o
about the

neutral axis. The rest are functions of X and t only.
The potential energy stored in the torsional spring is given by

PE
spring

"1
2
kh2, (12)

where h is the angle of twist of the torsional spring. The angle of twist, h, can be
approximated by the "rst derivative of the transverse de#ection v@(0, t) using the small-angle
assumption.

Therefore, we can write the potential energy as
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The kinetic energy has two components: kinetic energy of the beam and kinetic energy of
the point mass. The kinetic energy of the beam is given by
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where dot notation is used for derivatives with respect to time. Replacing the axial
displacement u

1
and u

2
using equation (3), we can write
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where the term with factor > integrated over the cross-section disappeared and the term
with factor >2 integrated over the cross-section became I

o
as before. The kinetic energy of
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the point mass is given by

KE
point mass
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[vR 2(¸, t)#uR 2(¸, t)]. (16)

The kinetic energy of the system is written as
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The term oI
o
vR @2 is Rayleigh's rotational term. It is the kinetic energy due to the rotation of

the cross-section and is usually small compared to the kinetic energy due to translation,
oA

o
(uR 2#vR 2).

The Lagrangian integrated over time, : tf
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Ldt": tf
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(KE!PE ) dt, is given by
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and the virtual work done by transverse and axial forces is given by
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2.3. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS VIA HAMILTON'S PRINCIPLE

The variation of equation (18) is given by
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Integrating by parts, we obtain
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Note that the variations at the two endpoints in time are assumed to be zero. Hamilton's
principle states that d: tf

ti
(L#=) dt"0, and thus the non-linear coupled equations of

motion are given by
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and the corresponding boundary conditions are given by
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For the problem at hand, the boundary conditions are given by
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Note that similar equations of motion and boundary conditions are obtained by Bottega
[4], Yigit and Christoforou [5], and Adrezin [6, 7]. Also note that Adrezin uses the Eulerian
formulation instead of the Lagrangian formulation used in this paper.
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2.4. NON-DIMENSIONALIZATION

Now, let us non-dimensionalize our equations of motion. The length scales X, v(X, t),
u(X, t) are normalized by the length of the beam ¸, the time t is normalized by 1/u6 where
u6 is some characteristic angular frequency. The energy is normalized by the bending energy.
We "nd that the equations of motion are then given by
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where barred quantities are non-dimensional quantities. Their expressions are given by
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Note that the non-linear coupling terms in the equations of motion have an s2 factor in
common. s is the slenderness ratio, the ratio of the length of the beam to the radius of
gyration of the cross-section. If the beam is slender, the contribution of the non-linear
coupling term becomes large. Therefore, this non-linear coupling term may be important for
o!shore structures which tend to be long.

3. FORMULATION OF p (X, t) AND f (X, t)

The external forcing functions, f (X, t) and p (X, t), are formulated to simulate forces when
a beam is placed under water and under gravity. The axial force per unit length p (X, t) is
due to gravity and buoyancy and is given by

p(X, t)"!ogA
o
#o

f
gA

f
for 0(X(d

"!ogA
o

for d(X(¸,
(27)

where o
f

is the density of the surrounding #uid, g is the gravitational acceleration, A
f

is the
cross-section of the displaced volume nr2

outer
, d is the water depth, and ¸ is the undeformed

beam length.
The transverse force is formulated using the Morison equation, given by [8]

f (X, t)"!C
A
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f
RG n#C

M
o
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;Q n#C

D
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f
r
outer
<n
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D<n
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where R is the displacement of the beam, ;Q is the acceleration of the #uid, and <
rel

is the
relative velocity of #uid with respect to the structure. The superscript n is used to indicate
that they are normal components (normal to the structure). C

A
is the added mass coe$cient,

C
D

is the drag coe$cient, and C
M

is the inertia coe$cient. Note that the Morison equation
is applicable when the drag force is predominant, which is the case when the structural
diameter is small compared to the water wavelength [9].

The "rst term in equation (28) is the added mass term, the second is the inertial term, and
the third is the drag term. The added mass e!ect is due to the fact that some of the #uid
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particles are displaced by the motion of the cylinder. The inertia force is exerted by the #uid
when it accelerates and decelerates as it passes around the circular cylinder. It also can be
interpreted as the force required to hold a cylinder stationary in a #ow of uniform
acceleration. The drag force is due to the pressure di!erence between the downstream and
upstream region. Since we assume, in the initial part of this study, that the water is still, there
is no inertia force and the relative velocity of the #uid with respect to the structure is the
negative of the structural velocity. In vectorial form, we can write the velocity and the
acceleration of the structure as

R0 "!V
rel
"uR i#vR j, RG"uK i#vK j. (29)

The normal components can be obtained by performing the double cross-products

RG n"D1]RG ]1 D , <n
rel
"D1]V

rel
]1 D , (30)

where the tangent vector 1 (to the structure) is given by

1"i#v@j (31)

and it is assumed that the angle of rotation is negligible when compared to 1. The resulting
normal vectors are given by
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Finally, the transverse force is given by
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where C @
D

is the drag coe$cient for an oscillating cylinder in still water. The coe$cient C @
D

is
di!erent from C

D
. The drag coe$cient C @

D
takes into account the velocity that occurs due to

an oscillating cylinder.

4. RESULTS AND DISCUSSION

The responses are obtained numerically for a beam with the same physical parameters as
one constructed by Professor Timothy Wei's group at Rutgers University. We hope to make
comparisons with experiments to be carried out in the future. The beam and the #uid
properties are given in Tables 1 and 2.
TABLE 1

¹he beam properties

Beam properties

Material Aluminum
Young's modulus, E 73)0 GPa
Density, o 2770 kg/m3
Point mass, M

p
0)236 kg

Torsional spring constant, k 38)8 N/m
Length, ¸ 1)27 m
Outer radius, r

o
0)0127 m

Inner radius r
i

0)0101 m



TABLE 2

¹he -uid properties

Fluid properties

Density of water, o
f

999 kg/m3
Water depth, d 1)05 m
Added mass coe$cient, C

A
1

Modi"ed drag coe$cient, C@
D

1
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First, we consider a uniform beam vibrating freely in vacuum in a gravity-free
environment. This will provide us with the non-linear structural characteristics such as
frequencies and shapes of free response. Second, we consider a beam vibrating in still water
under gravity. The Morison equation with damping and added mass terms is used to
simulate this condition. This will provide us with the damped characteristics such as the
frequencies and shapes of oscillation of the damped response. In both cases, free and
damped}free, the beam will oscillate due to non-zero initial conditions: initial displacement
and/or initial velocity.

Non-linearities can in#uence the response in many ways. For example, the frequencies of
vibration may vary with the initial conditions and vibration amplitude whereas those are
constant quantities in linear systems. Let us consider four initial conditions in order to
demonstrate the sensitivity to these. Here, we assume that the initial velocity is zero and the
displacement "elds correspond to physical con"gurations shown in Figure 5.

The four sets of initial displacements are listed in Table 3. The parameters (point loads
and applied moment) are chosen such that the static transverse end de#ection is 0)05 m,
which is approximately 4% of the beam length. The corresponding axial end de#ections are
about 0)001 m for IC

1
and IC

3
and 0)002 m for IC

2
. These end de#ections may be seen in

the experiments and is small enough so that the small-angle assumption is valid.
The "nite di!erence approach is employed to obtain the responses. The "nite di!erence

equations are written for the spatial derivatives for N nodes leading to the equations of
motion in terms of 2N second order ordinary di!erential equations in time. MATLAB
function ode45.m is used to solve the resulting ordinary di!erential equations. The function
ode45.m solves ordinary di!erential equations with initial conditions using the fourth or
"fth order Runge}Kutta method. Between 8 and 30 nodes are used initially to determine the
fewest number of nodes that can be used to ensure convergence. Here, 14 nodes are used. It
was found that the response obtained using 14 and 30 nodes do not deviate signi"cantly
from each other.

The natural frequencies predicted by the linear models of equations (1) and (2), with
appropriate boundary conditions, are given in Table 4. These data will be useful for
comparisons and discussions when we obtain the frequencies of vibration for the non-linear
system. The physical con"guration that is used for the linear longitudinal model is a beam
that is "xed at one end and has a point mass at the other end. The physical con"guration for
the linear transverse model is a beam that is supported by a torsional spring at one end and
has a point mass at the other end.

The corresponding initial transverse displacements that can be used for the linear
transverse model are given in Table 5.

This is a study preliminary to the forced response due to random waves and current.
When the current is added to the system, we expect to see a non-zero equilibrium position
after the transient response has died out. When the random waves are added to the Morison



Figure 5. Four sets of initial displacements.
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equation, the system will respond at additional frequencies. These cases are discussed in
Part 2.

4.1. THE FREE RESPONSE

In this section, we consider the free response of the system in vacuum and in a gravity-free
environment. We "rst look at the displacements at the tip, and corresponding phase plots
and spectral density plots. In addition, the physical elongation is plotted so that the axial
displacement is not mistaken as the elongation of the beam. The potential and kinetic
energies are plotted. From these studies, we hope to gain some insights to the physical
system such as the interaction between the axial and transverse displacements, the natural
frequencies of the system, and the distribution of energies within the system.
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TABLE 4

¹he natural frequencies obtained using linear models

Linear longitudinal model Linear transverse model
(Hz) (Hz)

f
u1
"677)65 f

v1
"1)2337

f
u2
"2313)7 f

v2
"47)549

f
u3
"4190)6 f

v3
"172)728

COMPLIANT STRUCTURE, PART 1 849
4.1.1. ¹he displacements, phase plots, and spectral density plots for the free end motion

This is the case where the external forcing functions, p(X, t) and f (X, t), equal zero in
equation (22). Figures 6}9 show the responses of the beam when subjected to initial
conditions IC

1
to IC

4
in Table 3. There are four plots in each "gure. They are the tip

displacements versus time and phase plots for the tip. The plots in the left column are for the
axial vibration and those in the right column are for the transverse vibration.

Let us look at the responses when the "rst three sets of initial conditions are used. From
the displacement plots, we notice that the motions in both transverse and axial direction



TABLE 5

Four sets of initial displacements for linear model

IC
1

v (X, 0)"!

P
o

EI A
X3

6
!

¸X2
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!

EI¸X

k B
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2
v(X, 0)"!M

o A
X2

2EI
#

X

kB
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3
v(X, 0)"

P
o
¸

2 A
X2

2EI
#

X

kB for 0(X(

¸
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v(X, 0)"!
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o

EI A
X3

6
!

¸X2

2
#

¸

8k
(¸k!4EI)X#

¸3

48B for
¸

2
(X(¸

Figure 6. The free response plots using IC
1
: (a) axial tip displacement versus time, (b) phase plot for the tip axial

motion, (c) transverse tip displacement versus time, (d) phase plot for the tip displacement motion.
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look sinusoidal. Only the axial displacement in Figure 7(a) seems to have a high-frequency
component. However, the phase plots for all three cases show the high-frequency
component, which indicates that all responses have high-frequency components and only
the amplitude of the high-frequency component varies from case to case. The low-frequency
or the fundamental frequency component describes the dominant motion or an envelop
which can be seen easily in the displacement plots.

Now, let us look at the transverse displacement plots in Figures 6(c)}8(c). They are shown
superimposed in Figure 10. We "nd from the "gures that the period for the transverse



Figure 7. The free response plots using IC
2
: (a) axial tip displacement versus time, (b) phase plot for the tip axial

motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.
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response is about 0)81 s (1)23 Hz) when IC
1

and IC
3

are used. This frequency is close to the
one predicted by the linear model. The period for the transverse responses are about 0)74 s
(1)35 Hz) when IC

2
is used. These fundamental frequencies of the transverse motion varied

with initial conditions, which is a characteristic of a non-linear system.
The transverse tip displacements shown in Figures 8(c)}10(c) are plotted again in

Figure 11 against the transverse tip displacements obtained using the linear model. The
responses look similar except for when IC

2
is used.

Figure 12 shows the spectral density plots of axial and transverse motion when IC
2

is
used. The frequency at which the peaks occur are f

u
"2)6, 47)3, 678, 2307,2(Hz), f

v
"1)3,

47)3, 170, 317, 361 508, 622, 630, 678, 725, 848, 931, 1273, 1631, 1988, 2138, 2307,2 (Hz).
Comparing the frequencies obtained using the linear models in Table 4, we "nd that the
frequencies 678 and 2307 Hz for the axial vibration and 1)3, 47)3, and 170 Hz can be found
approximately using the linear models. The rest can only be obtained using the non-linear
model.

Note that the fundamental frequencies of the axial motion are twice those of transverse
vibration. In order to explain why this is the case, let us look at a typical path taken by the
free end of the beam shown in Figure 13. When the free end goes through points 1, 2 and 3,
the transverse displacement makes half a cycle while the axial displacement makes one
complete cycle. This is true even when there is no longitudinal strain. Therefore, the
fundamental frequency in the axial displacement is purely due to the geometry. The tip
transverse displacement v(¸, t) is plotted in Figure 14 against the axial tip displacement



Figure 8. The free response plots using IC
3
: (a) axial tip displacement versus time, (b) phase plot for the tip axial

motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.
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u(¸, t) when IC
1

is used. The shape describes the actual path taken by the free end. The
schematic in Figure 13 indeed resembles the actual path.

In order to explain analytically why the fundamental frequency of the axial motion is
twice that of the transverse motion, let us go back to the axial equation of motion in
equation (22) with p (x, t)"0, or

oA
o
uK!EA

o
u@@"EA

o
v@v@@. (34)

From the response plots, we know that the transverse motion is approximately sinusoidal
with frequency u

v
. Then we can say v is approximately given by

v+g (X)e*uvt. (35)

Therefore, we can think of equation (34) as being forced by EA
o
g@(X)g@@(X)e*(2uv ) t which has

a frequency of 2u
v
. Therefore, the solution of equation (34) has frequencies that are natural

frequencies of the linear model (solution of oA
o
uK!EA

o
u@@"0) and the forcing frequency

2u
v
.

Let us look at the response plots in Figure 9 when fourth initial condition is used. Recall
that this is the case when there is an axial initial displacement only. The response plots show
that the transverse displacement stays zero. This shows that it is possible to excite the axial
motion without a!ecting the transverse motion. Physically, it is possible to have
longitudinal stress without generating moments. On the other hand, the reverse is not true.
It is not possible to have moments without generating longitudinal stress. Therefore, it is



Figure 9. The free response plots using IC
4
: (a) axial tip displacement versus time, (b) phase plot for the tip axial

motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.

Figure 10. Transverse tip displacements of the free vibrations: =, IC
1
; ) ) ) ) ) ), IC

2
; } ) } IC

3
.
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not possible to excite the transverse motion without a!ecting the axial motion. The axial
motion in this case can be described by the linear longitudinal model given by

oA
o
uK!EA

o
u@@"0. (36)



Figure 11. Transverse tip displacement obtained using both linear and nonlinear models: (a) IC
1
, (b) IC

2
,

(c) IC
3
: *, non-linear; ) ) ) ) ) ), linear model.

Figure 12. The power spectral density plots using IC
2
: (a) axial motion, (b) transverse motion.
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It should be noted that the axial displacement does not give any information on the
longitudinal strain nor the physical elongation of the beam directly. Figure 15 shows
the elongation of the beam as a function of time for all four cases. The expression for
the elongation dD of a beam element shown in Figure 16 is given by

dD"J[dX#u (X#dX)!u (X)]2#[v(X#dX)!v(X)]2!dX. (37)

Sum of these dD gives the total elongation of the beam.



Figure 13. A typical path taken by the free end.

Figure 14. v(¸, t) versus u(¸, t) using IC
1
.
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The elongations for all cases are mostly positive. The shapes do not resemble
sinusoidal functions. Instead, peaks tend to be sharper when the beam is at the extreme
position. Figure 17 shows the power spectral density plot of the elongation of the beam



Figure 15. The elongation versus time for the free response using four sets of initial conditions: (a) IC
1
, (b) IC

2
,

(c) IC
3
, (d) IC

4
. (The high frequency is at 678 Hz).

Figure 16. A beam element.
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Figure 17. The power spectral density plot of elongation using IC
2
.

Figure 18. The free response at 0)08 second interval:=, t"0; ) ) ) ) ) ), t"0)08, } )}, t"0)16; ' ' ' ' ' , t"0)24;
3 3

,
t"0)32; } }, t"0)40
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for IC
2
. Note that it resembles the power spectral density plot of the axial motion in

Figure 14(a).
So far, we have only examined the tip responses (displacement and phase plots). It may be

interesting to look at the whole beam at di!erent times. Figure 18 shows the responses
when IC

1
is used for the time from zero to 0)4 s at 0)05 s intervals. The beam goes through

approximately a half cycle. We observe that the overall motion is similar to the "rst mode
shape of the linear beam. Therefore, if we are concerned with the overall motion only,
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discarding the small amplitude high-frequency component may be reasonable, and the
linear model may be su$cient.

4.1.2. ¹he potential and kinetic energies

So far, we have examined the tip displacements, phase plots for the free end, spectral
density plots for the free end, and elongation of the beam. Next, we consider how the energy
is distributed in order to understand the physical system better.

Figures 19}21 show the potential energies, and Figures 22}24 show the kinetic energies
using the "rst three sets of initial conditions. The potential energies are the bending energy,
membrane energy, and the potential energy stored in the torsional spring. Their expressions
are given by

PE
bending

"

1

2 P
L

0

EI
o
v@@2dX,

PE
membrane

"

1

2 P
L

0

EA
oAu@#

1

2
v@2B

2
dX, PE

spring
"

1

2
kv@(0, t)2. (38)

The kinetic energies are the translational kinetic energy of the beam, rotational kinetic
energy of the beam, and the translational kinetic energy of the point mass. Their expressions
are given by

KE
translation

"

1

2 P
L

0

oA
o
(uR 2#vR 2) dX, KE

rotation
"

1

2 P
L

0

oI
o
vR @2dX,

KE
point mass

"

1

2
M

p
(vR (¸, t)2#uR (¸, t)2) . (39)
Figure 19. The potential energies of free vibration using IC
1
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .



Figure 20. The potential energies of free vibration using IC
2
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .

Figure 21. The potential energies of free vibration using IC
3
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .
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From the energy plots, we observe that the magnitude of the high-frequency component
varied from case to case. This was seen in the tip displacement plots in section 4.1.1.

The amplitudes of the potential energy stored in the torsional spring are almost the same
for all three cases. Recall that the end de#ections for all three cases are set to 0)05 m. The



Figure 22. The kinetic energies of free vibration using IC
1
: (a) KE

translation
, (b) KE

rotation
, (c) KE

point mass
.

Figure 23. The kinetic energies of free vibration using IC
2
: (a) KE

translation
, (b) KE

rotation
, (c) KE

point mass
.
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beam is almost rigid in our case such that the initial de#ections of the torsional spring,
v@(0, t) , for all three cases are near 0)05/¸. Therefore, it is reasonable that the energy stored in
the spring are almost the same for all three cases. The potential energies are then distributed
between the bending and the membrane energies. The bending energy is the dominant term



Figure 24. The kinetic energies of free vibration using IC
3
: (a) KE

translation
, (b) KE

rotation
, (c) KE

point mass
.
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for IC
1

where the high-frequency extensional e!ects are small, and the membrane energy is
the dominant term for IC

2
and IC

3
where the high-frequency extensional e!ects are

signi"cant.
Notice the similarity between the shapes of the membrane energy and the elongation of

the beam shown in Figure 15. This can be explained by rewriting the incremental
elongation in equation (37) as

dD"CSA1#
du

dXB
2
#A

dv

dXB
2
!1DdX. (40)

Using the Taylor expansion around du/dX+0 and dv/dX+0, we can rewrite the
incremental elongation as

dD"C
du

dX
#

1

2A
dv

dXB
2
#OAA

du

dXB
3
#A

dv

dXB
3

BDdX. (41)

Assuming small strain and moderate rotation given in equation (5), we can write

dD+C
du

dX
#

1

2A
dv

dXB
2

DdX. (42)

This expression is seen in the membrane energy expression. Therefore, the membrane
energy directly translates into the elongation of the beam. We also notice that the potential
energy and the kinetic energy are 1803 out of phase.

Figures 25 and 26 show the power spectral density plots of the potential and kinetic
energy when IC

2
is used. The high frequency shown in PE

membrane
, KE

trans
, and KE

mass
is



Figure 25. The power spectral density plots of potential energies using IC
2
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .

Figure 26. The power spectral density plots of kinetic energies using IC
2
: (a) KE

translation
, (b) KE

rotation
,

(c) KE
point mass

.
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1356 Hz. This is twice the frequency seen in the axial displacement. This makes sense
because those energies are quadratic functions of u(X, t) or derivatives of u(X, t). The power
spectral density plots for PE

bending
, PE

spring
, and KE

rotation
have many more peaks. This is

because those energies are functions of v(X, t) or derivatives of v(X, t), which has many
more peaks in their power spectral density plot.

Figure 27 shows the total energy of the system when IC
1

is used. The total energy is
constant because the system is conservative. The total energies for IC

2
and IC

3
(not shown

here) show more numerical errors, that grow with time.



Figure 27. The total energy of the system for IC
1
.
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4.2. THE FREE RESPONSE WITH DAMPING

In this section, the response of the beam in still water is considered. As in the free
vibration case, we examine the displacements at the tip, corresponding spectral density
plots, the physical elongation, and the distribution of kinetic and potential energies.

4.2.1. ¹he displacements, phase plots, and spectral density plots for the free end motion

The axial force is given by equation (27) and the transverse force by equation (28). The tip
displacements with time and phase plots for the tip are shown in Figures 28}31 for the same
four sets of initial conditions used for the undamped cases. Let us "rst consider responses
obtained using the "rst three sets of initial conditions.

The frequencies of vibration vary with initial conditions as in the free responses. The tip
transverse displacements when IC

1
, IC

2
and IC

3
are used are plotted in Figure 32 for an

easy comparison. The fundamental frequencies for the transverse response are about
1)08 Hz (0)93 s) when IC

1
and IC

3
are used, and 1)12 Hz (0)89 s) when IC

2
is used. When the

periods of damped motion are compared with those of the corresponding free cases,
damped responses are slower than undamped responses as we expected. It is interesting to
note that the IC

2
produces the fastest response for both undamped and damped cases.

The fundamental frequencies of the corresponding tip axial displacements in
Figures 28(a)}30(a) are twice those of transverse vibration as we have seen in the free
undamped case.

Figure 33 shows the spectral density plots when IC
2
is used. The peaks occur at f

u
"2)24,

32)5, 677, 2300,2(Hz), f
v
"1)12, 33)6, 114, 247, 429, 564, 650, 677, 688, 711,2(Hz). When

compared with the spectral density plots for the free vibration in Figure 14, peaks in
Figure 33 generally are shifted to the left, some more so than others.

The transverse motion in all cases in Figures 28(b)}30(b) approaches its asymptote at
zero by oscillating around it. However, the axial motion approaches its asymptote
oscillating (at twice the fundamental frequency of the transverse motion) without



Figure 28. The damped free response plots using IC
1
: (a) axial tip displacement versus time, (b) phase plot for

the tip axial motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.

Figure 29. The damped free response plots using IC
2
: (a) axial tip displacement versus time, (b) phase plot for

the tip axial motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.
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Figure 30. The damped free response plots for IC
3
: (a) axial tip displacement versus time, (b) phase plot for the

tip axial motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.

Figure 31. The damped free response plots for IC
4
: (a) axial tip displacement versus time, (b) phase plot for the

tip axial motion, (c) transverse tip displacement versus time, (d) phase plot for the tip transverse motion.
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Figure 32. Transverse tip displacements of damped-free vibrations: *, IC
1
; ) ) ) ) ) ), IC

2
; } ) } IC

3
.

Figure 33. The power spectral density plots for the damped system using IC
2
: (a) axial motion, (b) transverse

motion.
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overshooting the asymptote. It is helpful to recall that the axial displacement is the
displacement from the reference con"guration in the axial direction (x direction), and the
axial motion at the fundamental frequency is geometrically induced from the transverse
motion. Therefore, the axial displacement should not overshoot.

The axial displacement plots show that the fundamental frequency motions damp out
and only the high-frequency response remains. After a while, the axial motion seems to be
decoupled from the transverse motion. In order to examine why this happens, it is noted
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that the Morison equation, is formulated to act perpendicular to the beam. We assumed
that the rotation is small enough so that the Morison force only acts in the transverse
direction. Therefore, the Morison #uid force directly a!ects the transverse motion, and
a!ects the axial motion indirectly through the coupling of the transverse and the axial
motions. The magnitude of its in#uence on the axial motion depends on the magnitude of
the transverse motion and the coupling.

The Morison force in our case damps the transverse motion and therefore weakens the
coupling between two motions. In the end, the axial motion becomes e!ectively decoupled
from the transverse motion and the Morison #uid forcing. At this point, there is no
mechanism for the #uid forces to slow down the axial motion. Since the transverse motion
has exponentially decayed, we no longer see the fundamental frequency response in the axial
motion.

Analytically, the change in total energy between t"q
0

and q is given by

E (q)!E (q
o
)"P

L

0
C P

q

q0
MC

D
o
f
r
o
(uR v@!vR ) DuR v@!vR D#C

A
o
f
nr2

o
(uK v@!vK )NvR dtDdX. (43)

If there is no transverse vibration, vR (X, t)"0, there is no energy loss. Therefore, it is possible
that the undamped axial motion can still exist after the transverse motion has died out.

The phase plots in Figures 28(c, d)}30(c, d), when the transverse motion exists, show
decreasing spirals, which means that the system is dissipative.

Figure 31, when there is no transverse motion, shows that the in#uence of the #uid
forcing and the coupling between the transverse and the axial motion no longer exist. The
axial motion in this case can be described by the linear longitudinal model given in
equation (36).

The physical elongation in Figure 34 seem to persist with time. This is the result of having
an axial motion that does not damp out. The elongations in all cases barely show the e!ect
of diminishing transverse motion.

4.2.2. ¹he potential and kinetic energies

Figures 35}37 show the potential energies, and Figures 38}40 show the kinetic energies
of the system for the "rst three initial conditions. The energies of the damped system show
some of the same characteristics that we have seen in the free system: shapes of elongation
resemble the shape of membrane energy, the potential energies themselves are in phase, the
kinetic energies themselves are in phase, the potential energy and the kinetic energy are 1803
out of phase. The degree of the high-frequency component in the response is similar to the
corresponding responses in the free vibration.

Now, let us look at how the energy is transferred between the potential energy and kinetic
energy. Looking at the potential energies, only the membrane energy persists with time
while the bending and spring energy seem to diminish with time. Looking at the kinetic
energies obtained using IC

2
and IC

3
, membrane energy shows up as the translational

kinetic energy of the beam and the kinetic energy of the point mass. They, the membrane
energy, translational kinetic energy, and the kinetic energy of the point mass, all have axial
displacement in common. This is consistent with our previous result that only the axial
motion persists in the system when the Morison force is applied.

Figure 41 shows the total energies of the system with time for all three initial conditions.
The total energy decays while oscillating when IC

1
is used. The total energy #uctuates due

to the phase di!erence between the kinetic and potential energy. When IC
2

and IC
3

are
used, the total energy does not seem to decrease. This is because the most energy is in the



Figure 34. The elongation versus time for the damped free vibration using four sets of initial conditions: (a) IC
1
,

(b) IC
2
, (c) IC

3
, (d) IC

4
. (The high frequency is at 677 Hz).

Figure 35. The potential energies of the damped free vibration using IC
1
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .
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Figure 36. The potential energies of the damped free vibration using IC
2
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .

Figure 37. The potential energies of the damped free vibration using IC
3
: (a) PE

bending , (b) PE
membrane

, (c) PE
spring .
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axial motion. Note that 50 and 100 nodes are used in order to produce energies associated
with IC

2
and IC

3
respectively. This is because the error was noticeable when only 14 nodes

are used in those cases.



Figure 38. The kinetic energies of the damped free vibration using IC
1
: (a) KE

translation
, (b) KE

rotation
,

(c) KE
point mass

.

Figure 39. The kinetic energies of the damped free vibration using IC
2
: (a) KE

translation
, (b) KE

rotation
,

(c) KE
point mass

.
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Figure 40. The kinetic energies of the damped free vibration using IC
3
: (a) KE

translation
, (b) KE

rotation
,

(c) KE
point mass

.

Figure 41. The total energy of the damped system: (a) IC
1

(14 nodes), (b) IC
2

(50 nodes), (c) IC
3

(100 nodes).
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4.2.3. E+ect of varying -uid coe.cients

The added mass coe$cient, C
A
, changes the e!ective mass length density (oA

effective
) of

the beam. Therefore, larger C
A

means longer period and smaller decay rate. Increasing the



Figure 42. The transverse tip displacement using IC
1

and C
D
"1: *, C

A
"0)5; ) ) ) ) ) ), C

A
"1; } }, C

A
"1)5.

Figure 43. The transverse tip displacement using IC
1

and C
A
"1: *, C

D
"0)5; ) ) ) ) ) ), C

D
"1; } }, C

D
"1)5.
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drag coe$cient, C@
D
, will increase the damping in the system. Here, the coe$cients are varied

$50% of their nominal values of C
A
"1 and C@

D
"1.

Figure 42 shows the transverse tip displacement for C
A
"0)5, 1, and 1)5. The periods of

oscillation are 0)877, 0)933, 0)987 s. The amplitude ratios of the second to the "rst peaks are
0)640, 0)670, and 0)694. The period varied from !6)00 to #5)79%, and the amplitude ratio
varied from !4)48 to #3)58%.

Figure 43 shows the transverse tip displacement for C
D
"0)5, 1, and 1)5. The amplitude

ratios of the second to the "rst peaks are 0)800, 0)670, and 0)570. The amplitude ratio varied
from #19)4 to !14)9%.
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The responses are more sensitive to the drag coe$cient than the added mass
coe$cient.

5. SUMMARY AND CONCLUSIONS

Analysis showed that the fundamental frequency for the free transverse motion ranged
from 1)23 to 1)3 rad/s for the initial conditions used. The fundamental frequency for the
transverse motion with damping ranged from 1)08 to 1)12 rad/s. The fundamental frequency
of the axial motion was twice the fundamental frequency of the corresponding transverse
motion. The axial motion at this frequency is geometrically induced from the transverse
motion. It is possible to excite the axial motion without inducing the transverse motion,
while the reserve is not possible. The #uid damping force modelled using the Morison
equation a!ects the transverse motion directly, and then the transverse motion a!ects the
axial motion through the system coupling. The in#uence on the axial motion by the
Morison #uid forcing depends on the magnitude of the transverse motion.
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